Skip to content
| Marketplace
Sign in
Visual Studio Code>Other>Semantic Code SearchNew to Visual Studio Code? Get it now.
Semantic Code Search

Semantic Code Search

zilliz

|
35 installs
| (0) | Free
Code indexing and semantic search (built by Code Context)
Installation
Launch VS Code Quick Open (Ctrl+P), paste the following command, and press enter.
Copied to clipboard
More Info

Semantic Code Search VSCode Extension

Visual Studio Marketplace

A code indexing and semantic search VSCode extension powered by Code Context.

📖 New to Code Context? Check out the main project README for an overview and setup instructions.

img

Features

  • 🔍 Semantic Search: Intelligent code search based on semantic understanding, not just keyword matching
  • 📁 Codebase Indexing: Automatically index entire codebase and build semantic vector database
  • 🎯 Context Search: Search related code by selecting code snippets
  • 🔧 Multi-platform Support: Support for OpenAI, VoyageAI, Gemini, and Ollama as embedding providers
  • 💾 Vector Storage: Integrated with Milvus vector database for efficient storage and retrieval

Requirements

  • VSCode Version: 1.74.0 or higher

Installation

From VS Code Marketplace

  1. Direct Link: Install from VS Code Marketplace

  2. Manual Search:

    • Open Extensions view in VSCode (Ctrl+Shift+X or Cmd+Shift+X on Mac)
    • Search for "Semantic Code Search"
    • Click Install

Quick Start

Configuration

The first time you open Code Context, you need to click on Settings icon to configure the relevant options.

Embedding Configuration

Configure your embedding provider to convert code into semantic vectors.

OpenAI Configuration:

  • Embedding Provider: Select "OpenAI" from the dropdown
  • Model name: Choose the embedding model (e.g., text-embedding-3-small, text-embedding-3-large)
  • OpenAI API key: Your OpenAI API key for authentication
  • Custom API endpoint URL: Optional custom endpoint (defaults to https://api.openai.com/v1)

Other Supported Providers:

  • Gemini: Google's state-of-the-art embedding model with Matryoshka representation learning
  • VoyageAI: Alternative embedding provider with competitive performance
  • Ollama: For local embedding models

Code Splitter Configuration

Configure how your code is split into chunks for indexing.

Splitter Settings:

  • Splitter Type: Choose between "AST Splitter" (syntax-aware) or "LangChain Splitter" (character-based)
  • Chunk Size: Maximum size of each code chunk (default: 1000 characters)
  • Chunk Overlap: Number of overlapping characters between chunks (default: 200 characters)

Recommendation: Use AST Splitter for better semantic understanding of code structure.

Milvus configuration

Zilliz Cloud(fully managed Milvus vector database as a service, you can use it for free)

  • MILVUS_ADDRESS is the Public Endpoint of your Zilliz Cloud instance
  • MILVUS_TOKEN is the token of your Zilliz Cloud instance.
MILVUS_ADDRESS=https://xxx-xxxxxxxxxxxx.serverless.gcp-us-west1.cloud.zilliz.com
MILVUS_TOKEN=xxxxxxx

Optional: Self-hosted Milvus. See Milvus Documentation for more details to install Milvus.

Usage

  1. Set the Configuration:

    • Open VSCode Settings (Ctrl+, or Cmd+, on Mac)
    • Search for "Semantic Code Search"
    • Set the configuration
  2. Index Codebase:

    • Open Command Palette (Ctrl+Shift+P or Cmd+Shift+P on Mac)
    • Run "Semantic Code Search: Index Codebase"
  3. Start Searching:

    • Open Semantic Code Search panel in sidebar
    • Enter search query or right-click on selected code to search

Commands

  • Semantic Code Search: Semantic Search - Perform semantic search
  • Semantic Code Search: Index Codebase - Index current codebase
  • Semantic Code Search: Clear Index - Clear the index

Configuration

  • semanticCodeSearch.embeddingProvider.provider - Embedding provider (OpenAI/VoyageAI/Gemini/Ollama)
  • semanticCodeSearch.embeddingProvider.model - Embedding model to use
  • semanticCodeSearch.embeddingProvider.apiKey - API key for embedding provider
  • semanticCodeSearch.embeddingProvider.outputDimensionality - Output dimension for Gemini (supports 3072, 1536, 768, 256)
  • semanticCodeSearch.milvus.address - Milvus server address

Contributing

This VSCode extension is part of the Code Context monorepo. Please see:

  • Main Contributing Guide - General contribution guidelines
  • VSCode Extension Contributing - Specific development guide for this extension

Related Packages

  • @zilliz/code-context-core - Core indexing engine used by this extension
  • @zilliz/code-context-mcp - Alternative MCP server integration

Tech Stack

  • TypeScript
  • VSCode Extension API
  • Milvus Vector Database
  • OpenAI/VoyageAI Embeddings

License

MIT - See LICENSE for details

  • Contact us
  • Jobs
  • Privacy
  • Manage cookies
  • Terms of use
  • Trademarks
© 2025 Microsoft