Skip to content
| Marketplace
Sign in
Visual Studio Code>Linters>Sentinel AI SafetyNew to Visual Studio Code? Get it now.
Sentinel AI Safety

Sentinel AI Safety

Sentinel Seed Team

|
10 installs
| (0) | Free
| Sponsor
AI safety guardrails for LLM prompts using the THSP protocol (Truth, Harm, Scope, Purpose)
Installation
Launch VS Code Quick Open (Ctrl+P), paste the following command, and press enter.
Copied to clipboard
More Info

Sentinel AI Safety: IDE Extension

AI safety guardrails for LLM prompts using the THSP protocol (Truth, Harm, Scope, Purpose).

Sentinel VS Code Marketplace OpenVSX

Supported IDEs

IDE Installation Status
VS Code VS Code Marketplace ✅ Available
Cursor OpenVSX or Extensions panel ✅ Available
Windsurf OpenVSX or Extensions panel ✅ Available
VSCodium OpenVSX ✅ Available

Note: Cursor and Windsurf are VS Code forks that use the OpenVSX registry. The same extension works across all supported IDEs.

Features

Two Analysis Modes

Mode Method Accuracy Requires
Semantic (recommended) LLM-based analysis High (~90%) LLM provider (OpenAI, Anthropic, Ollama, Groq)
Heuristic (fallback) Pattern matching Limited (~50%) Nothing

For accurate results, configure an LLM provider. Heuristic mode uses pattern matching which has significant false positives/negatives.

Real-time Safety Linting

The extension automatically detects potentially unsafe patterns in your prompts:

  • Jailbreak attempts: "ignore previous instructions", persona switches
  • Harmful content: weapons, hacking, malware references
  • Deception patterns: fake documents, impersonation
  • Purposeless actions: requests lacking legitimate benefit

Commands

Command Description
Sentinel: Analyze Analyze selected text using THSP protocol
Sentinel: Analyze File Analyze entire file
Sentinel: Insert Seed Insert standard seed (~1,000 tokens)
Sentinel: Insert Seed (Minimal) Insert minimal seed (~360 tokens)
Sentinel: Set OpenAI Key Store OpenAI API key securely
Sentinel: Set Anthropic Key Store Anthropic API key securely
Sentinel: Set Custom API Key Store key for OpenAI-compatible endpoints
Sentinel: Status Show current analysis mode and provider
Sentinel: Compliance Run all compliance checks (EU AI Act, OWASP, CSA)
Sentinel: EU AI Act EU AI Act (2024/1689) assessment
Sentinel: OWASP OWASP LLM Top 10 vulnerability scan
Sentinel: CSA CSA AI Controls Matrix assessment
Sentinel: Scan Secrets Scan for API keys and credentials
Sentinel: Sanitize Check for prompt injection patterns
Sentinel: Validate Validate LLM output for security issues
Sentinel: SQL Injection Scan Detect SQL injection patterns in prompts
Sentinel: Metrics Dashboard View analysis statistics and history
Sentinel: Clear Metrics Clear all stored metrics

The THSP Protocol

Every request is evaluated through four gates:

Gate Question
Truth Does this involve deception?
Harm Could this cause harm?
Scope Is this within boundaries?
Purpose Does this serve legitimate benefit?

All four gates must pass for content to be considered safe.

Configuration

Recommended: Enable Semantic Analysis

For accurate analysis, configure an LLM API key using the secure method:

  1. Open Command Palette (Ctrl+Shift+P or Cmd+Shift+P)
  2. Run Sentinel: Set OpenAI Key or Sentinel: Set Anthropic Key
  3. Enter your API key (stored encrypted in VS Code's SecretStorage)

Alternatively, you can set keys in VS Code Settings (less secure, stored in plaintext).

Supported Providers

Provider API Key Required Description
OpenAI Yes GPT-4o, GPT-4o-mini, etc.
Anthropic Yes Claude 3 Haiku, Sonnet, Opus
Ollama No Local models (llama3.2, mistral, qwen2.5)
OpenAI-compatible Yes Groq, Together AI, or any OpenAI-compatible API

Ollama (Local, Free)

Run models locally with no API key:

  1. Install Ollama
  2. Pull a model: ollama pull llama3.2
  3. Start the server: ollama serve
  4. In VS Code Settings (Ctrl+,), search for "sentinel" and set:
    • sentinel.llmProvider: ollama
    • sentinel.ollamaModel: llama3.2 (or your preferred model)

OpenAI-Compatible Endpoints (Groq, Together AI)

Use any OpenAI-compatible API:

  1. Get API key from your provider (e.g., Groq, Together AI)
  2. Run Sentinel: Set Custom API Key command
  3. Configure in settings:
    • sentinel.llmProvider: openai-compatible
    • sentinel.openaiCompatibleEndpoint: Your API URL
    • sentinel.openaiCompatibleModel: Model name

Popular endpoints: | Provider | Endpoint | Example Model | |----------|----------|---------------| | Groq | https://api.groq.com | llama-3.3-70b-versatile | | Together AI | https://api.together.xyz | meta-llama/Llama-3.3-70B-Instruct-Turbo |

All Settings

Setting Default Description
sentinel.enableRealTimeLinting true Enable real-time safety linting
sentinel.seedVariant standard Default seed variant (minimal/standard)
sentinel.highlightUnsafePatterns true Highlight unsafe patterns
sentinel.llmProvider openai LLM provider (openai/anthropic/ollama/openai-compatible)
sentinel.openaiApiKey "" OpenAI API key
sentinel.openaiModel gpt-4o-mini OpenAI model
sentinel.anthropicApiKey "" Anthropic API key
sentinel.anthropicModel claude-3-haiku-20240307 Anthropic model
sentinel.ollamaEndpoint http://localhost:11434 Ollama server endpoint
sentinel.ollamaModel llama3.2 Ollama model
sentinel.openaiCompatibleEndpoint "" Custom API endpoint (Groq, Together AI)
sentinel.openaiCompatibleApiKey "" Custom API key
sentinel.openaiCompatibleModel llama-3.3-70b-versatile Custom API model

Usage Examples

Checking Prompts for Safety Issues

  1. Select the text you want to analyze
  2. Right-click and choose "Sentinel: Analyze"
  3. View the THSP gate results with confidence level

Understanding Analysis Results

The extension shows:

  • Method: Semantic (LLM) or Heuristic (pattern matching)
  • Confidence: How reliable the analysis is
  • Gate results: Pass/fail for each THSP gate
  • Issues: Specific concerns detected
  • Reasoning: Explanation (semantic mode only)

Severity Levels

  • 🔴 Error: High-risk patterns (weapons, safety bypass)
  • 🟡 Warning: Potential issues (jailbreak attempts)
  • 🔵 Information: Consider reviewing
  • 💡 Hint: Suggestions (missing Sentinel seed)

Semantic vs Heuristic Analysis

Semantic Analysis (Recommended)

Uses an LLM to understand content contextually:

  • ✅ Understands context ("hack my productivity" vs malicious hacking)
  • ✅ Detects paraphrased harmful content
  • ✅ Provides reasoning for decisions
  • ✅ ~90% confidence

Heuristic Analysis (Fallback)

Uses pattern matching for basic detection:

  • ⚠️ May flag legitimate content (false positives)
  • ⚠️ May miss paraphrased threats (false negatives)
  • ⚠️ No contextual understanding
  • ⚠️ ~50% confidence

Compliance Checking

The extension includes regulatory compliance checking against three major frameworks:

Supported Frameworks

Framework Coverage Description
EU AI Act Article 5 prohibited practices, Annex III high-risk contexts Risk classification (unacceptable/high/limited/minimal)
OWASP LLM Top 10 6/10 vulnerabilities with strong THSP coverage Input and output validation against LLM security risks
CSA AI Controls Matrix 10/18 domains with THSP support Security domains and threat category assessment

OWASP LLM Top 10 Coverage

Vulnerability THSP Gates Coverage
LLM01: Prompt Injection Scope Strong
LLM02: Sensitive Info Disclosure Truth, Harm Strong
LLM05: Improper Output Handling Truth, Harm Strong
LLM06: Excessive Agency Scope, Purpose Strong
LLM07: System Prompt Leakage Scope Moderate
LLM09: Misinformation Truth Strong*

*Note on LLM09 (Misinformation): Heuristic detection of misinformation is inherently limited. Pattern matching can identify obvious indicators (overconfident claims, dangerous medical advice, uncited sources), but accurate misinformation detection requires semantic analysis with an LLM. For best results with LLM09, configure an API key for semantic mode.

Infrastructure-Level Vulnerabilities

The following vulnerabilities require infrastructure-level controls and are outside THSP's behavioral scope:

  • LLM03: Supply Chain: Use verified dependencies and model provenance
  • LLM04: Data/Model Poisoning: Requires training pipeline controls
  • LLM08: Vector/Embedding Weaknesses: RAG pipeline security
  • LLM10: Unbounded Consumption: Rate limiting and quotas

Supported Languages

  • Markdown
  • Plain text
  • Python
  • JavaScript/TypeScript
  • JSON
  • YAML

Installation by IDE

VS Code

  1. Open VS Code
  2. Go to Extensions (Ctrl+Shift+X)
  3. Search for "Sentinel AI Safety"
  4. Click Install

Or install via command line:

code --install-extension sentinelseed.sentinel-ai-safety

Cursor

Cursor uses the OpenVSX registry. To install:

  1. Open Cursor
  2. Go to Extensions (Ctrl+Shift+X)
  3. Search for "Sentinel AI Safety"
  4. Click Install

If the extension doesn't appear, you can install manually:

  1. Download .vsix from OpenVSX
  2. In Cursor: Ctrl+Shift+P, then "Extensions: Install from VSIX..."

Windsurf

Windsurf also uses OpenVSX:

  1. Open Windsurf
  2. Go to Extensions panel
  3. Search for "Sentinel AI Safety"
  4. Click Install

Manual Installation (Any IDE)

For any VS Code-compatible IDE:

  1. Download the .vsix file from Releases
  2. Open Command Palette (Ctrl+Shift+P)
  3. Run "Extensions: Install from VSIX..."
  4. Select the downloaded file

MCP Server Alternative

For deeper integration with AI assistants in Cursor or Windsurf, you can also use the Sentinel MCP Server. See MCP Server documentation.

Links

  • Sentinel Website
  • Documentation
  • GitHub
  • PyPI Package
  • OpenVSX

License

MIT License. See LICENSE for details.


Made by Sentinel Team

  • Contact us
  • Jobs
  • Privacy
  • Manage cookies
  • Terms of use
  • Trademarks
© 2026 Microsoft