AI Skeleton Prompts & Memory
Complete AI agent toolkit for VS Code: Native memory management, workflow prompts, MCP integration, and agent definitions.
🎯 Purpose
This extension extends Copilot agent context and memory capabilities by providing:
- AI-Memory Tools - 7 Language Model Tools that agents can invoke autonomously
- Workflow Prompts - Structured prompts for Think → Plan → Execute workflows
- MCP Integration - Easy installation of Model Context Protocol servers
- Agent Definitions - Pre-configured agent modes (Memory & Deep Thinking)
📦 Installation
Requirements
- VS Code: 1.95.0 or newer (for Language Model Tools API)
- License: Proprietary — see LICENSE (explicit written approval required)
Install from VS Code Marketplace (Recommended)
- Search "AI Skeleton" in VS Code Extensions
- Click Install on "AI Skeleton Prompts & Memory" by JasdeepN
Or install via command line:
code --install-extension JasdeepN.ai-skeleton-extension
Install from VSIX
- Download latest
.vsix from releases
- In VS Code: Extensions →
... menu → "Install from VSIX..."
- Select the downloaded
.vsix file
- Reload VS Code
Verify Installation
Run command: AI Skeleton: List Registered LM Tools
You should see 7 registered tools including showMemory, logDecision, updateContext, etc.
🚀 Quick Start
1. Install Agent Assets
Run command:
AI Skeleton: Install All
This installs:
- Prompts to
.github/prompts/
- Agents to
.github/agents/
- Protected files to
.github/
- MCP configuration to
.vscode/mcp.json
Tip: After installing MCP config, you can auto-start MCP servers on startup. See Settings → AI Skeleton: MCP Auto Start.
In Copilot chat, type # and you should see the memory tools appear in the picker:
#showMemory - Read AI-Memory contents
#logDecision - Log decisions
#updateContext - Update active context
- And 4 more...
3. Use Agent Mode
Switch to agent mode in Copilot and select the Memory & Deep Thinking agent from .github/agents/.
📦 Features
Agents can autonomously invoke these tools on VS Code 1.95+:
| Tool |
Purpose |
Parameters |
aiSkeleton_showMemory |
Read memory bank contents |
fileType (optional): "all", "activeContext", "decisionLog", etc. |
aiSkeleton_logDecision |
Log architectural/technical decisions |
decision, rationale |
aiSkeleton_updateContext |
Update active working context |
contextUpdate |
aiSkeleton_updateProgress |
Track task progress |
item, status ("done", "doing", "next") |
aiSkeleton_updatePatterns |
Record system patterns/conventions |
pattern, context |
aiSkeleton_updateProjectBrief |
Update project goals/scope |
briefUpdate |
aiSkeleton_markDeprecated |
Mark items deprecated without deletion |
item, reason, replacement |
Example Agent Usage:
// Agent automatically invokes:
aiSkeleton_logDecision({
decision: "Use TypeScript for type safety",
rationale: "Catches errors at compile time"
})
aiSkeleton_updateProgress({
item: "Implement user authentication",
status: "done"
})
2. Memory Bank Structure
AI-Memory/
├── activeContext.md # Current work focus
├── decisionLog.md # Architectural decisions
├── progress.md # Task tracking (done/doing/next)
├── systemPatterns.md # Code patterns/conventions
└── projectBrief.md # Project goals/context
3. Workflow Prompts
Embedded (baked) versions of:
- Think.prompt.md - Deep research and analysis
- Plan.prompt.md - Task breakdown and planning
- Execute.prompt.md - Implementation guidance
- Checkpoint.prompt.md - Progress review
- Sync.prompt.md - Memory-codebase synchronization
- GH.prompt.md - GitHub Actions workflows
- Startup.prompt.md - Session initialization
Optional workspace override: if your repository has .github/prompts/*.prompt.md files they will automatically be used (when aiSkeleton.prompts.source = auto or workspace).
4. Memory & Deep Thinking Agent
Pre-configured agent mode (memory-deep-think.agent.md) with:
- Autonomous memory updates
- Structured reasoning workflows
- MCP tool integration
- Tagged entry system for efficient scanning (
[TYPE:YYYY-MM-DD] format)
5. Visual Interface
- Memory Bank Tree View: Visual browser for
AI-Memory/ files in Explorer
- AI Skeleton Prompts Tree View: Browse and interact with embedded prompts
- Memory Status Bar: Shows ACTIVE/INACTIVE status; click to create or view
- Commands & Tools: Both manual commands and agent-invokable tools available
🛠️ Usage
Creating Memory Bank
- Open Command Palette (
Ctrl+Shift+P)
- Run:
AI Skeleton: Create Memory Bank
- Select workspace folder
- Memory bank files created in
AI-Memory/
Installing Prompts & Agents
Command Palette → AI Skeleton: Install All
Installs to .github/prompts/ and .github/agents/ in your workspace.
Agent Memory Integration
On VS Code 1.95+, agents can autonomously use memory tools. Use Extension Development Host (F5) for development/debugging if needed:
# .github/agents/memory-deep-think.agent.md
tools:
- aiSkeleton_showMemory
- aiSkeleton_logDecision
- aiSkeleton_updateContext
- aiSkeleton_updateProgress
- aiSkeleton_updatePatterns
- aiSkeleton_updateProjectBrief
- aiSkeleton_markDeprecated
Agent automatically invokes tools during conversation. No manual intervention needed.
📋 Commands
Prompts
AI Skeleton: List Prompts - Quick pick prompt browser
AI Skeleton: Save Prompt to File... - Save to disk
AI Skeleton: Insert Prompt at Cursor - Insert into editor
AI Skeleton: Copy Prompt to Clipboard - Copy content
AI Skeleton: Install Built-in Prompts - Install all to .github/prompts
AI Skeleton: Install Single Prompt - Install one prompt
Installation
AI Skeleton: Install Agent Templates - Install to .github/agents
AI Skeleton: Install Protected Files - Install to .github/
AI Skeleton: Install All - One-click full setup
AI Skeleton: Install MCP Servers - Add .vscode/mcp.json with recommended servers
Memory Management (Manual)
AI Skeleton: Memory Bank Status - Check/create memory bank
AI Skeleton: Create Memory Bank - Initialize memory-bank folder
AI Skeleton: Show Memory Summary - View all memory contents
AI Skeleton: Log Decision - Record a decision
AI Skeleton: Update Context - Update active context
AI Skeleton: Update Progress - Track progress items
AI Skeleton: Update System Patterns - Record patterns
AI Skeleton: List Registered LM Tools - Verify agent tools availability
MCP
AI Skeleton: Start MCP Servers — Reads .vscode/mcp.json and starts configured command-based MCP servers in terminals
Settings
aiSkeleton.mcp.autoStart (boolean): Automatically start MCP servers on window startup. Prompts on first run per-workspace.
aiSkeleton.prompts.source: auto | embedded | workspace
Configuration
aiSkeleton.prompts.source: auto | embedded | workspace
🤔 FAQ
Why doesn't it work when I install the VSIX?
It should, provided you're on VS Code 1.95+. The Language Model Tools API is stable in these versions.
If tools don't appear in agent mode or the tool picker:
- Verify VS Code version (Help → About): must be 1.95 or newer
- Reload VS Code after installation
- Run
AI Skeleton: List Registered LM Tools to verify 7 tools are registered
Can I use this without the extension?
Yes! The prompts and agents work standalone:
- Copy
.github/prompts/ and .github/agents/ to your project
- Agents can still read/write
AI-Memory/ files via filesystem MCP
- The extension adds enhanced UX and autonomous tool invocation
What about production use?
For production VSIX distribution, you would need:
- Publish to VS Code Marketplace
- Request proposed API access from Microsoft
- Get publisher ID allowlisted
Or, use the file-based approach (agents read/write memory files directly via MCP filesystem tool).
Run command: AI Skeleton: List Registered LM Tools
Expected: 7 tools registered (showMemory, logDecision, updateContext, updateProgress, updatePatterns, updateBrief, markDeprecated).
🔧 Development
Building
npm install
npm run build # Embeds assets + compiles TypeScript
Press F5 in VS Code to launch an Extension Development Host and test the extension.
Packaging
npm run package:vsix
# or
node scripts/package-vsix.js
Automated versioning: auto-bumps patch version (0.0.1) if unchanged since last package.
Project Structure
ai-skeleton-extension/
├── src/
│ ├── extension.ts # Main activation
│ ├── memoryTools.ts # LM Tools registration (7 tools)
│ ├── memoryService.ts # Core memory operations
│ ├── promptStore.ts # Embedded prompts (auto-generated)
│ ├── agentStore.ts # Embedded agents (auto-generated)
│ └── mcpStore.ts # MCP configurations
├── agents/
│ └── memory-deep-think.agent.md # Agent definition (source)
├── prompts/
│ ├── Think.prompt.md
│ ├── Plan.prompt.md
│ └── Execute.prompt.md
│ └── ...
├── scripts/
│ ├── embed-prompts.js # Build-time embedding
│ ├── embed-agents.js # Build-time embedding
│ └── package-vsix.js # Auto-versioning packager
└── package.json # Extension manifest
📖 Documentation
🧪 Testing
Quick CLI checks:
npm install
npm run build # Full build with asset embedding
npm run verify # Verify embedded prompts
Manual interactive tests (in VS Code):
- Open repository in VS Code (
ai-skeleton-extension folder)
- Press
F5 to start Extension Development Host
- In the new window:
- Check Status Bar for
AI Prompts: N and Memory: ACTIVE/INACTIVE
- Run
AI Skeleton: List Registered LM Tools → verify 7 tools
- Expand
AI Skeleton Prompts in Explorer
- Create Memory Bank → Log Decision → Show Summary
- Test agent integration with Copilot chat
📝 Memory Management Rules (Enforced)
- Never delete from memory files - only append new entries
- Tag all entries with
[TYPE:YYYY-MM-DD] format for efficient scanning
- Timestamp everything automatically
- Read selectively: Use tags/timestamps to scan only recent/relevant entries
📄 License
Proprietary. See LICENSE. Usage requires explicit written approval by the publisher.
🙏 Credits
Built for agent-assisted development workflows. Uses VS Code's Language Model Tools API for seamless agent integration.
Marketplace: JasdeepN.ai-skeleton-extension
Install: code --install-extension JasdeepN.ai-skeleton-extension
Status: Production-ready on VS Code 1.95+