Vajra - Enterprise AI Coding Assistant
The most comprehensive multi-provider AI coding assistant for VSCode
Vajra brings the power of GPT-5, Claude 4, Qwen3-Coder, and 10+ cutting-edge AI models directly into your development workflow. Built as a true Cursor alternative with enterprise-grade features, local model support, and intelligent model routing.
🚀 Key Features
🧠 Latest AI Models (2025)
- GPT-5 & Codex - OpenAI's most advanced coding models (74.9% SWE-bench accuracy)
- Claude 4 Sonnet/Opus - 1M token context window for entire codebase understanding
- Qwen3-Coder - Alibaba's specialized 480B coding model with autonomous agent training
- DeepSeek-Coder V2.5 - Best value with 338 programming languages
- Mistral Codestral 25.01 - Fastest coding assistant with 86.6% HumanEval
- Gemini 2.5 Pro - Multimodal with code execution and 1M context
⚡ Smart Features
- Intelligent Model Routing - Automatically selects the best model for each task
- Multi-Provider Support - 10+ providers including local Ollama models
- Enterprise Security - Local model deployment for sensitive codebases
- Cost Optimization - Transparent pricing with usage tracking
- Multimodal Input - Image, voice, and code understanding
🎯 Coding Superpowers
- Code Generation - Natural language to working code
- Intelligent Refactoring - Context-aware code improvements
- Bug Detection - AI-powered debugging assistance
- Performance Optimization - Automated code optimization
- Test Generation - Comprehensive unit test creation
- Documentation - Auto-generated comments and docs
📦 Quick Start
1. Install the Extension
# Install from VSCode Marketplace
ext install ashishjsharda.vajra
# Or search "Vajra" in VSCode Extensions
For Cloud Models (Recommended):
{
"vajra.defaultProvider": "qwen",
"vajra.qwenApiKey": "your-api-key-here",
"vajra.autoModelSelection": true
}
For Local Models (Privacy-First):
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Pull a coding model
ollama pull qwen2.5-coder:7b
3. Start Coding with AI
- Chat: Open sidebar and ask questions
- Code Selection: Right-click code → "Explain with Vajra"
- Quick Actions:
Ctrl+Shift+P → "Vajra: Generate Code"
🔧 Supported Providers & Models
☁️ Cloud Providers
OpenAI GPT-5 Series
// Best overall performance
models: [
'gpt-5', // 74.9% SWE-bench, 272K context
'gpt-5-codex', // Specialized coding model
'o1-preview', // Advanced reasoning
'gpt-4o' // Multimodal capabilities
]
Anthropic Claude 4
// Best for reasoning and large context
models: [
'claude-4-sonnet', // 1M token context window
'claude-4-opus', // Premium reasoning model
'claude-3.5-sonnet' // Proven coding performance
]
Qwen3-Coder (Alibaba)
// Best for autonomous coding
models: [
'qwen3-coder-480b-instruct', // 480B parameter flagship
'qwen3-coder-32b-instruct', // Best performance/cost
'qwen2.5-coder-14b-instruct' // Efficient option
]
DeepSeek-Coder V2.5
// Best value proposition
models: [
'deepseek-coder-v2.5', // Latest unified model
'deepseek-coder-v2-instruct' // 338 programming languages
]
Mistral Codestral
// Fastest coding assistant
models: [
'codestral-25.01', // 2x faster generation
'codestral-22b' // Proven performance
]
🏠 Local Models (Ollama)
Privacy-First Deployment
# Top coding models for local deployment
ollama pull qwen2.5-coder:32b # Best overall local model
ollama pull deepseek-coder-v2:16b # Great performance, MIT license
ollama pull starcoder2:15b # Open source specialist
ollama pull codellama:34b # Meta's coding model
⚙️ Configuration
Basic Setup
{
"vajra.defaultProvider": "qwen",
"vajra.defaultModel": "qwen3-coder-32b-instruct",
"vajra.autoModelSelection": true,
"vajra.temperature": 0.7,
"vajra.maxTokens": 4096
}
Enterprise Configuration
{
"vajra.enableCostTracking": true,
"vajra.enableMultiModalInput": true,
"vajra.ollamaEndpoint": "http://localhost:11434",
"vajra.autoModelSelection": true
}
API Key Setup
Go to Settings > Extensions > Vajra and add your API keys:
🎨 Usage Examples
Generate Code from Natural Language
// Type: "Create a React component for a todo list"
// Vajra generates:
import React, { useState } from 'react';
interface Todo {
id: number;
text: string;
completed: boolean;
}
const TodoList: React.FC = () => {
const [todos, setTodos] = useState<Todo[]>([]);
const [input, setInput] = useState('');
const addTodo = () => {
if (input.trim()) {
setTodos([...todos, {
id: Date.now(),
text: input,
completed: false
}]);
setInput('');
}
};
return (
<div className="todo-list">
<input
value={input}
onChange={(e) => setInput(e.target.value)}
onKeyPress={(e) => e.key === 'Enter' && addTodo()}
placeholder="Add a todo..."
/>
<button onClick={addTodo}>Add</button>
<ul>
{todos.map(todo => (
<li key={todo.id} className={todo.completed ? 'completed' : ''}>
{todo.text}
</li>
))}
</ul>
</div>
);
};
export default TodoList;
Intelligent Code Refactoring
// Before (select this code):
function processUsers(users) {
let result = [];
for (let i = 0; i < users.length; i++) {
if (users[i].age >= 18) {
result.push({
name: users[i].name,
email: users[i].email,
isAdult: true
});
}
}
return result;
}
// Right-click → "Refactor with Vajra"
// After:
const processAdultUsers = (users: User[]): ProcessedUser[] => {
return users
.filter(user => user.age >= 18)
.map(user => ({
name: user.name,
email: user.email,
isAdult: true
}));
};
Smart Debugging
// Buggy code:
function calculateTotal(items) {
let total = 0;
for (item of items) { // Missing 'const'
total += item.price * item.quantity;
}
return total;
}
// Select code → "Debug with Vajra"
// Vajra identifies: "Missing 'const' declaration in for-of loop"
// Provides fix with explanation
🏢 Enterprise Features
Security & Compliance
- Local Model Deployment - Keep sensitive code on-premises
- Audit Trails - Complete usage logging and tracking
- SOC 2 Ready - Enterprise security standards
- Data Privacy - No code storage on external servers with local models
Team Management
- Usage Analytics - Track model usage and costs across teams
- Model Policies - Enforce approved models for different projects
- Budget Controls - Set spending limits and alerts
DevOps Integration
- CI/CD Pipeline - Integrate AI code review in automated workflows
- Git Integration - AI-powered commit message generation
- Code Quality - Automated code review and suggestions
| Model |
HumanEval |
MBPP |
SWE-bench |
Context |
Speed |
| GPT-5 Codex |
91.2% |
89.7% |
74.9% |
272K |
Fast |
| Qwen3-Coder-32B |
88.4% |
86.1% |
68.2% |
256K |
Fast |
| Claude 4 Sonnet |
84.9% |
82.3% |
49.0% |
1M |
Medium |
| DeepSeek-V2.5 |
90.2% |
76.2% |
43.4% |
128K |
Fast |
| Codestral 25.01 |
86.6% |
81.1% |
42.8% |
256K |
Fastest |
Benchmarks as of September 2025
💰 Pricing Comparison
API Costs (per 1M tokens)
| Provider |
Input |
Output |
Best For |
| DeepSeek |
$0.14 |
$0.28 |
Best Value |
| Qwen |
$0.60 |
$1.20 |
Coding Specialist |
| Mistral |
$1.00 |
$3.00 |
Speed |
| Gemini |
$1.25 |
$5.00 |
Multimodal |
| Anthropic |
$3.00 |
$15.00 |
Large Context |
| OpenAI |
$10.00 |
$30.00 |
Premium Performance |
Local Models (FREE)
- DeepSeek-Coder V2 - MIT License, commercial use allowed
- StarCoder2 - OpenRAIL License, commercial friendly
- CodeLlama - Llama 2 License, <700M users free
🛠️ Advanced Usage
Custom Model Configuration
// Smart model routing based on task
const config = {
"vajra.modelRouting": {
"code": "qwen3-coder-32b-instruct",
"reasoning": "o1-preview",
"chat": "claude-4-sonnet",
"vision": "gpt-5"
}
};
Multimodal Capabilities
// Upload screenshot for UI-to-code conversion
// Drag & drop images into chat
// Voice commands: "Explain this function"
Batch Processing
// Process multiple files
// Bulk refactoring across codebase
// Generate tests for entire project
🔌 Extensions & Integrations
Popular Integrations
- GitHub Copilot - Use alongside for different strengths
- ESLint/Prettier - Auto-fix with AI suggestions
- Jest/Vitest - AI-generated test cases
- Docker - AI-powered Dockerfile optimization
Language Support
Full Support: TypeScript, JavaScript, Python, Java, C++, C#, Go, Rust, PHP, Ruby, Swift, Kotlin, Scala, R, SQL, HTML, CSS, Bash, PowerShell
Specialized: React, Vue, Angular, Node.js, Django, Flask, Spring Boot, .NET, AWS CDK, Terraform
📄 License
MIT License - see LICENSE file for details.
🆘 Support
- Email: ashishjsharda@gmail.com
⭐ If Vajra helps your coding workflow, please leave a review!
Built with ❤️ by Ashish Sharda