Skip to content
| Marketplace
Sign in
Visual Studio Code>Snippets>Prompt or DieNew to Visual Studio Code? Get it now.
Prompt or Die

Prompt or Die

Prompt-or-Die

|
117 installs
| (0) | Free
The ultimate extension for developing AI agents with support for all major frameworks including OpenAI Agents SDK, ElizaOS, LangGraph, CrewAI, AutoGen, SmolAgents, and more.
Installation
Launch VS Code Quick Open (Ctrl+P), paste the following command, and press enter.
Copied to clipboard
More Info

AI Agent Studio - VS Code Extension

🤖 The ultimate VS Code extension for developing AI agents with comprehensive support for all major frameworks including OpenAI Agents SDK, ElizaOS, LangGraph, CrewAI, AutoGen, SmolAgents, and more.

Version Downloads Rating

🚀 Features Overview

🏗️ Framework Support (10+ Frameworks)

Production-Ready Frameworks

  • OpenAI Agents SDK - Latest production-ready multi-agent framework
  • ElizaOS - Web3-friendly TypeScript agent framework with character-based AI
  • LangGraph - State machine approach for complex agent workflows
  • CrewAI - Role-based multi-agent collaboration framework
  • Microsoft AutoGen - Conversation-based multi-agent systems
  • SmolAgents - Minimalist code-first agent development
  • Google ADK - Enterprise-grade agent development kit
  • Semantic Kernel - Microsoft's enterprise AI orchestration framework
  • LangChain - Popular LLM application framework
  • Pydantic AI - Type-safe agent development with validation

🎯 Core Capabilities

📋 Project Management

  • Smart Project Templates - 25+ production-ready templates
  • Framework Detection - Automatically detect and configure installed frameworks
  • Project Scaffolding - Complete project structure generation
  • Dependency Management - Automatic dependency installation and verification

💡 Intelligent Code Assistance

  • Smart Snippets - 50+ framework-specific code snippets
  • Auto-completion - Context-aware code completion
  • Syntax Highlighting - Custom syntax highlighting for agent configs
  • Error Detection - Framework-specific error detection and suggestions

🔍 Context7 Integration

  • Real-time Documentation - Up-to-date framework documentation
  • Code Examples - Latest working code examples
  • API References - Quick access to API documentation
  • Best Practices - Framework-specific development patterns

📊 Agent Monitoring & Testing

  • Real-time Monitoring - Monitor agent performance and behavior
  • Debug Tools - Advanced debugging capabilities
  • Testing Framework - Built-in testing tools for agents
  • Performance Analytics - Response time, success rate, and resource usage tracking

🎨 Visual Tools

  • Agent Dashboard - Comprehensive agent management interface
  • Flow Visualizer - Visualize agent workflows and interactions
  • Project Explorer - Enhanced project navigation
  • Framework Status - Visual framework installation status

🛠 Developer Experience

⚡ Quick Start Experience

  1. One-Click Project Creation - Create complete agent projects in seconds
  2. Template Selection - Choose from basic to advanced templates
  3. Automatic Setup - Dependencies, configuration, and examples included
  4. Live Documentation - Context7 provides real-time help

🔄 Development Workflow

  • Code Generation - Generate agent boilerplate with templates
  • Live Reload - Hot reload during development
  • Deployment Helpers - Deploy to AWS, Google Cloud, Azure, and more
  • CI/CD Integration - GitHub Actions and other CI/CD workflows

📦 Installation

From VS Code Marketplace

  1. Open VS Code
  2. Go to Extensions (Ctrl+Shift+X)
  3. Search for "AI Agent Studio"
  4. Click Install

From Command Line

code --install-extension ai-agent-studio.ai-agent-studio

From VSIX File

code --install-extension ai-agent-studio-1.0.0.vsix

🎮 Quick Start Guide

🚀 Create Your First Agent Project

Option 1: Command Palette

  1. Open Command Palette (Ctrl+Shift+P / Cmd+Shift+P)
  2. Type AI Agent Studio: Create New Agent Project
  3. Select your framework (OpenAI, ElizaOS, LangGraph, etc.)
  4. Choose a template (Basic, Advanced, Production)
  5. Configure project details
  6. Start coding immediately!

Option 2: Activity Bar

  1. Click the 🤖 AI Agent Studio icon in the Activity Bar
  2. Click "Create Project" in the Agent Projects panel
  3. Follow the wizard to set up your project

💻 Use Framework-Specific Snippets

TypeScript/JavaScript

// Type 'openai-agent' then Tab
import { Agent } from '@openai/agents-sdk';

export class MyAgent extends Agent {
    constructor() {
        super({
            name: 'MyAgent',
            instructions: 'You are a helpful AI assistant.',
            model: 'gpt-4o',
            temperature: 0.7
        });
    }

    async handleMessage(message: string): Promise<string> {
        // Implementation
    }
}

Python

# Type 'crewai-agent' then Tab
from crewai import Agent

agent = Agent(
    role='Research Specialist',
    goal='Gather comprehensive information',
    backstory='Expert researcher with years of experience',
    verbose=True,
    tools=[search_tool],
    memory=True
)

🔍 Access Real-time Documentation

  1. Right-click Context Menu: Right-click in editor → "Search Context7 Documentation"
  2. Command Palette: AI Agent Studio: Search Context7 Documentation
  3. Hover Information: Hover over framework keywords for instant docs
  4. Sidebar Explorer: Browse documentation in the Context7 Explorer panel

🏗️ Framework-Specific Features

🤖 OpenAI Agents SDK

// Multi-agent coordination
export class CoordinatorAgent extends Agent {
    private agents: Map<string, Agent> = new Map();

    async delegateTask(task: string, agentName?: string): Promise<string> {
        const agent = agentName ? 
            this.agents.get(agentName) : 
            await this.selectBestAgent(task);
        return await agent.complete(task);
    }
}

Features:

  • Function calling support
  • Multi-agent orchestration
  • Streaming responses
  • Production-ready templates

🎭 ElizaOS

// Character-based AI
const character = {
    name: 'TechAssistant',
    bio: 'A knowledgeable technical assistant',
    lore: [
        'I specialize in software development',
        'I help debug code and explain concepts'
    ],
    style: {
        all: ['Be technical but approachable', 'Provide code examples']
    }
};

Features:

  • Character personality system
  • Custom action handlers
  • Provider integrations
  • Web3 compatibility

🔗 LangGraph

# State machine workflows
class WorkflowState(TypedDict):
    messages: Annotated[List[str], operator.add]
    current_step: str
    result: str

workflow = StateGraph(WorkflowState)
workflow.add_node('process', process_node)
workflow.add_conditional_edges('process', decide_next)

Features:

  • Visual workflow designer
  • State management
  • Conditional logic
  • Human-in-the-loop support

👥 CrewAI

# Multi-agent teams
researcher = Agent(role='Researcher', goal='Gather information')
analyst = Agent(role='Analyst', goal='Analyze data')
writer = Agent(role='Writer', goal='Create content')

crew = Crew(
    agents=[researcher, analyst, writer],
    tasks=[research_task, analysis_task, writing_task],
    process=Process.sequential
)

Features:

  • Role-based agents
  • Sequential and hierarchical processes
  • Task delegation
  • Memory sharing

💬 AutoGen

# Conversational agents
user_proxy = autogen.UserProxyAgent(name="User")
assistant = autogen.AssistantAgent(name="Assistant")
groupchat = autogen.GroupChat(agents=[user_proxy, assistant])
manager = autogen.GroupChatManager(groupchat=groupchat)

Features:

  • Group chat management
  • Code execution
  • Human input modes
  • Conversation flow control

⚙️ Configuration

🔧 Extension Settings

Setting Description Default
aiAgentStudio.defaultFramework Default framework for new projects openai-agents-sdk
aiAgentStudio.context7.enabled Enable Context7 integration true
aiAgentStudio.context7.apiKey Context7 API key for enhanced access ""
aiAgentStudio.monitoring.enabled Enable agent monitoring true
aiAgentStudio.autoCompleteEnabled Enable framework-specific auto-completion true
aiAgentStudio.templatePath Custom template directory path ""

🔑 API Keys Configuration

// settings.json
{
    "aiAgentStudio.defaultFramework": "openai-agents-sdk",
    "aiAgentStudio.context7.enabled": true,
    "aiAgentStudio.monitoring.enabled": true
}

🌐 Context7 Setup

  1. Built-in Integration (Recommended):

    • Extension includes Context7 integration
    • Enable in settings: aiAgentStudio.context7.enabled: true
  2. Manual Setup:

    npm install -g @upstash/context7-mcp
    

📚 Available Commands

🎯 Core Commands

Command Shortcut Description
Create New Agent Project Ctrl+Shift+A P Create a new agent project
Open Agent Dashboard Ctrl+Shift+A D Open visual agent management
Generate Agent Code Ctrl+Shift+A G Generate agent from templates
Search Context7 Documentation Ctrl+Shift+A S Search framework docs
Start Agent Monitoring Ctrl+Shift+A M Start agent monitoring
Test Agent Ctrl+Shift+A T Run agent tests
Deploy Agent Ctrl+Shift+A Y Deploy agent to platforms

🛠 Framework Commands

Command Description
Configure Framework Settings Configure framework-specific settings
Install Framework Install and configure framework dependencies
Open Framework Documentation Open framework documentation
Visualize Agent Flow Create visual flow diagrams
Refresh Framework Status Update framework installation status

📊 Monitoring Commands

Command Description
View Agent Logs Open agent execution logs
Agent Performance Report Generate performance analytics
Debug Agent Flow Debug agent execution step-by-step
Export Agent Metrics Export monitoring data

🏗️ Project Structure

📁 Generated Project Structure

my-agent-project/
├── .aiagent/                 # Extension metadata
│   └── project.json         # Project configuration
├── src/                     # Source code
│   ├── agents/             # Agent implementations
│   │   ├── coordinator.ts  # Main coordinator agent
│   │   └── specialists/    # Specialized agents
│   ├── tools/              # Custom tools and functions
│   │   ├── search.ts       # Search tools
│   │   └── data.ts         # Data processing tools
│   ├── workflows/          # Agent workflows
│   │   └── main.ts         # Main workflow definition
│   ├── config/             # Configuration files
│   │   ├── agents.json     # Agent configurations
│   │   └── env.ts          # Environment setup
│   └── utils/              # Utility functions
├── tests/                   # Test suites
│   ├── unit/               # Unit tests
│   ├── integration/        # Integration tests
│   └── e2e/                # End-to-end tests
├── docs/                    # Documentation
│   ├── README.md           # Project documentation
│   ├── API.md              # API documentation
│   └── deployment.md       # Deployment guide
├── examples/                # Usage examples
├── .env.example            # Environment template
├── package.json            # Dependencies and scripts
├── tsconfig.json           # TypeScript configuration
└── docker-compose.yml      # Docker setup

🎨 Template Categories

🟢 Basic Templates

  • Single agent setup
  • Simple conversation flow
  • Basic tool integration

🟡 Advanced Templates

  • Multi-agent systems
  • Complex workflows
  • Custom tool development

🔴 Production Templates

  • Enterprise-ready setup
  • CI/CD integration
  • Monitoring and logging
  • Security best practices

🧪 Testing & Debugging

🔍 Built-in Testing Tools

Unit Testing

// Automatic test generation
describe('MyAgent', () => {
    it('should handle basic queries', async () => {
        const agent = new MyAgent();
        const response = await agent.handleMessage('Hello');
        expect(response).toBeDefined();
    });
});

Integration Testing

  • Multi-agent interaction tests
  • Workflow validation
  • Tool integration verification

Performance Testing

  • Response time monitoring
  • Memory usage tracking
  • Concurrency testing

🐛 Debugging Features

  • Breakpoint Support - Set breakpoints in agent code
  • Step-through Debugging - Debug agent execution step-by-step
  • Variable Inspection - Inspect agent state and variables
  • Call Stack Analysis - Trace agent execution flow

🚀 Deployment Options

☁️ Cloud Platforms

AWS Deployment

# Using AWS Lambda
npm run deploy:aws

Google Cloud Deployment

# Using Cloud Functions
npm run deploy:gcp

Azure Deployment

# Using Azure Functions
npm run deploy:azure

🐳 Container Deployment

# Generated Dockerfile
FROM node:18-alpine
WORKDIR /app
COPY . .
RUN npm install && npm run build
CMD ["npm", "start"]

🏠 Local Development

# Development server
npm run dev

# Production build
npm run build && npm start

🔧 Advanced Features

🎛️ Agent Dashboard

  • Real-time Metrics - Monitor agent performance live
  • Visual Workflows - See agent interactions graphically
  • Resource Usage - Track CPU, memory, and API usage
  • Alert System - Get notified of issues or anomalies

📈 Analytics & Monitoring

  • Performance Metrics - Response time, throughput, error rates
  • Usage Statistics - API calls, user interactions, resource consumption
  • Custom Dashboards - Create custom monitoring views
  • Export Capabilities - Export data for external analysis

🔒 Security Features

  • API Key Management - Secure storage and rotation
  • Access Control - Role-based permissions
  • Audit Logging - Track all agent activities
  • Compliance - GDPR, SOC2 compliance helpers

🤝 Contributing

We welcome contributions from the community! Here's how to get involved:

🐛 Bug Reports

  1. Check existing issues on GitHub
  2. Create detailed bug report with reproduction steps
  3. Include system information and extension version

💡 Feature Requests

  1. Discuss new features in GitHub Discussions
  2. Create feature request with use case and requirements
  3. Consider contributing implementation

🔧 Development

# Clone repository
git clone https://github.com/ai-agent-studio/vscode-extension
cd vscode-extension

# Install dependencies
npm install

# Start development
npm run watch

# Run tests
npm test

# Build extension
npm run package

📝 Documentation

  • Improve existing documentation
  • Add framework-specific guides
  • Create video tutorials
  • Translate documentation

🆘 Support & Community

💬 Get Help

  • GitHub Issues - Bug reports and feature requests
  • GitHub Discussions - Questions and community support
  • Discord Server - Real-time chat with developers and users
  • Documentation - Comprehensive guides and API references

🌟 Community Resources

  • Example Projects - Community-contributed examples
  • Blog Posts - Development tips and best practices
  • Video Tutorials - Step-by-step guides
  • Webinars - Live development sessions

📧 Contact

  • Email: support@ai-agent-studio.com
  • Twitter: @aiagentStudio
  • LinkedIn: AI Agent Studio

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🔄 Roadmap & Updates

🎯 Current Version (1.0.0)

  • ✅ 10+ framework support
  • ✅ Project templates and snippets
  • ✅ Context7 integration
  • ✅ Agent monitoring and testing
  • ✅ Visual dashboard and flow visualizer

🚀 Upcoming Features (1.1.0)

  • 🔄 More framework integrations
  • 🔄 Advanced debugging tools
  • 🔄 Team collaboration features
  • 🔄 Cloud IDE integration
  • 🔄 Mobile agent development

🌟 Future Plans (2.0.0)

  • 🔄 Visual agent builder (drag-and-drop)
  • 🔄 AI-powered code generation
  • 🔄 Marketplace for agent components
  • 🔄 Enterprise features
  • 🔄 Multi-language support

🏆 Recognition

📊 Stats

  • 10+ Supported frameworks
  • 25+ Project templates
  • 50+ Code snippets
  • 100+ Example projects

🥇 Awards & Recognition

  • VS Code Extension of the Month (Coming Soon)
  • Developer Choice Award (Coming Soon)
  • Community Favorite (Coming Soon)

🤖 Made with ❤️ for the AI agent development community 🤖

⭐ Star on GitHub • 📖 Documentation • 💬 Join Discord • 🐦 Follow on Twitter

  • Contact us
  • Jobs
  • Privacy
  • Manage cookies
  • Terms of use
  • Trademarks
© 2025 Microsoft